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This paper studies the role H-sets play in finding the best linear Tchebychefi
approximation to a given continuous function. A simple definition is given for
H-scts and the algebraic theory for linear approximation is developed. We find
that many of the theorems where thc Haar condition is supposed can be
gencralized in terms of H-sets; thus a general framework for Lincar Tchebychef?
Approximation is made.

1. NOTATION AND DEFINITIONS

We consider a compact topological space B and denote by C(B) the set of
continuous real- or complex-valued functions defined on B. Functions in
C(B) will be approximated in the Tchebychefl sense by the finear subspace V
of C(B) with a basis {g; , £ ,..., £.} and the degree of approximation to f by V
will be denoted by p(f). For a given fin C(B) and any /1in V, elements x of B
satisfying '/ — h{ == f(x) — h(x)] will be referred to as norm points of /1
with respect to f; if /1 is a best Tchebycheff approximation (BTA) to f by V
we will merely refer to them as norm points.

DeFiniTiON |, The finite subset {x, . x,,..., x;} of B s an H-ser if and
only if the matrix equation
) lo)
((’)r‘

has a solution [ == (/, , /,,.... [,) with all /; - 0. We then write the F-set as
[x;. A/, e;, k] where A; = |/, |, e; =sgn/,. We note that this definition
leads directly to the Haar condition when V is a Tchebycheff system.

(gl(.-xl) gl(:\'k) ([1

gaxy) - galXp) M
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We will refer to the H-set [x;, A, ¢;, k] and its point set {x,} by the same
letter M and to the matrix relation defining the H-set as A(M) 1 == 8, where 8
is the null vector.

DerINITION 2. An H-set [x; . A, . ¢, , k] is minimal when no subset of the
point set {x;; forms an H-set.

We see immediately that every set of more than # points of B must contain
a minimal A-set: also a maximal minimal H-set has exactly (s < 1) points.

THEOREM 1.1, A set M« {x;.xg...x:0 © B is an H-sei with respect
to Vif and only if there exists « set of nonzero scalars {l; 1 i« 1,2, k) such
that for everv in V

A
> Ly 0.
il

Proof. kvery /i in V can be writlen as a - g’ (prime denotes transpose),
with o (v, v, v and g -« (g0 8s ¢,). The theorem follows when
we consider the relationship

This theorem shows the equivalence of our definition of H-set and that of
extremal signature [5).

Remark 1. U s is any nouzero scalar then the quadruple [v, .15 A,
e, sgn s, k]1s an H-set if and only if [x, , A, , ¢, . k] is. In particular, by taking

5% = 1, the real (Re) and imaginary (Im) parts of e, are essentially inter-
changed.
Lemma 1.1, The zero vector § is an element of the closed convex set S, a

subset of the locally convex topological Ti-space X, if and only if there is no
continuous linear functional L defined on X such that Re [L(x)] == 0 for all
xeS.
Proof.  Suppose 8 ¢ S: then there exist scalars A; and elements x; .S such
that
O - Auxy o Awxy o 4 AN,

Then for every linear functional £ on X we have

Y M) 0
o1

which cannot be valid for an L for which Re [L{x)] = Oforall x ¢ §.
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Conversely, if & does not belong to S; then the desired conclusion follows
from separation theorems for convex sets.

THEOREM 1.2. If[x;, A, e;, k] is an H-ser with respect 10 V then there is
no function h € V such that Rele:i(x;)] = 0, [Im[e/i(x;)] == 0} fori - 1, 2,...,
k, with strict inequality for some i. Conversely, if there is no he V such that
Refe(x))] = 0, [Imfe(x;)] > 0] for i — 1,2,k then [x;. A .¢;. K]
contains an H-set.

i

Proof. Suppose [x;,A;,e;, k] is an H-set. Then, from Theorem .1,
there can be no s e V such that Re[ei(x;)] =: 0 for i -1, 2. k., with strict
imequality for some /.

For the converse, let A= a- g and ¢; - (e;g(x;). €;gx(x,)..... €,2,(X;)).
Then /i(x;) == « - ¢;/. From the definition of linear functionals on R” (or C")
and the supposition, it follows that there can be no linear functional L defined
on R" (or C%) such that Re[L(c,)] =~ 0 for i == 1, 2..... k. Thus from
Lemma 1.1, the zero vector 8 must belong to the convex hull of the set of
vectors {¢;,’}. Hence, there must exist a set of scalars, {A,}, real and non-

negative, such that
(gl(:\’]_) g1(:\'1.-)) (’Cl_’\l) (0\)
o o

gn('\.l) gn('\‘lx-)/ WA,

and the result follows.

From Remark 1, the theorem follows for Ime,/i(x;)}. This theorem shows
that there is a relationship between our definition of H-set and that of
Collatz [1. 2, 3].

2. Basic THEOREMS

From our definition of H-sets we can see that they must have many of the
properties of alternants for Tchebycheff systems. We now state without
proof two general theorems, the first can be found in [1. 2, 3). and the second
i [4].

THEOREM 2.1, Suppose on the point set {x;} of the H-set [x, . A;.e;, k],
the error in approximating the function [ by hyc V is R, = f(x;) — hy{x;) and
sgn R, - ¢,. Then there is no heV such thar

Re[R.i(x;)] = 0
or

Im[RAx)] -0  foralli.
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and we have

inf: R, p(fYy = i) hyt
THEOREM 2.2, A function h, is a BTA to f by V if and only if the inequality
mip Re[(/(s) Ay i) 0
holds for every he V., where D is the set of norm points of h, with respect 1o f.

These theorems lead us directly to the following important theorem which
was first stated in [5]. We give here a more concise proof and we will refer to
the theorem us the ““Approximation Theorem.™

THEOREM 2.3 {Approximation Theorem). Giren a function [< C(B) for
which we want to find a BTA with respect to V. If a function hy € V can be found
such that a subset of the norm points of Iy with respect 10 f, viz.. X{ . Xs..... X .
is the point set of an H-ser |x, . A, (e, k] and the error R - | h, satisfies

sgn R(x;y ¢, . i1 20k

their hy is a BTA 1o f by 8. Conversely, if hy is a BYA (o [ by V' then some
Sfinite subset of the norm points, sav {xy . X, ... \,.\. and the scalar values

e, osenl ) fv)). 1.2 k.
define an H-set [x, . A; .e, . k].
Proof. For the first part we use Theorem 2.1, and get

mi R AN

i
hence the result. For the converse we use Thezorem 2.2 according to which
there is no n-tuple b - (b, . h, ... h,) such that

Relb - g(x)(/(X) - h(x)] 0 (1)
for all the norm points. Clearly the set of n-tuples (g}(.\‘}f/’»(_;)—m-/;E)) .....
S XN LX)~ hy(x))). where x ranges over the set of norm points, is compact.
Thus from Lemma 1.1 and inequality (1) above, the zero vector § must belong
to the convex hull of this set of n-tuples. Hence there exist positive A, . A, ...
A, such that

\L. A g__r'{"i)(-_f(i\‘f) EREWY 0
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for j == I, 2,..., n, the x, being norm points. Setting e; = sgn{f{x;} — Ay(x,)},
we have

.
=l Y Aeggix) = 0
t==1

forj -- 1, 2,..., n, which defines an H-set [x;, A;, e;, k].

[t is a direct consequence of Theorem 2.3 that if k4, is a BTA to f by V,
then f, is also a BTA to f'by V on every H-set chosen from the set of norm
points. We now go further and show that the norm points of a BTA to fby V/
contain a subset common to every set of norm pomts of a BTA to f by V.

THEOREM 2.4. [f M is an H-set [x;, A, , e; . k] contained in the set of norm
points of Iy, a BTA to f by V, then it is also an H-set contained in the set of
norm points of h, , where h, is a BTA to f by V.

Proof. We will assume that #, and /1, are distinct functions of ¥. Because

hy.is a BTA to fby V, we have fori - 1,2....k,

Re[e!(f(x,) - /I'.!(Xi))] P(f) == ev(f(xi) - /ll(-\.i))~
Thus

Refed/n(x;) — I(x )] « O for all 7.
If M is not contained in the set of norm points of 4, . then there must be at
least one point giving strict inequality. Hence from Theorem 1.2, the qua-
druple [x;. A;, e, .k} 15 not an H-set, a contradiction. Similarly, if the
sgn( f(x,) — fa(x,)) do not equal the e, , we get the same contradiction. Hence
[x, . A; . e; . k] must be an H-set contained in the set of norm points of /1, .

We will denote by N(f) this common set of points which are norm points of
every BTA to fby V.

DerrviTioN 3. The contour defined by a function rin V' is

Oy — {x:x e B, hix) = 0.
THEOREM 2.5,  If there is no uniqgue BTA to fbv V. then the set N( [ lies
a some contour O().

Proaf. Consider an H-set M - [x;,A;, e, . k] contained in N(f) and
two different best approximations A, and /1, . From Theorem 2.4,

h(x,) — Ix) - 0 fori = 1,2, k.

Hence the points {x,} lie in the contour O(f; — /1,) and therefore so does
the set N(f). The theorem follows.
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THEOREM 2.6.  An H-set M = [x;, A, , e, , k] lies in a contour O(h) if and
only if the matrix A(M) has rank less than n.

Proof.  We consider the set of homogenous equations
() 4 Xy v x,) AM) 0.
For every nonzero a. thesc equations can be written as
fi{x,) - 0, i 1,2, AL

where /1. ag’; equivalently, the points {x,} lie in the contour O¢h). However,
there exists such a nonzero vector a if and only if rank A(M) is less than 2.
We see from this theorem and Theorem 2.5 that if there is no unique BTA
to by V. then M( /) cannot contain a maximal minimal H-set.
We now consider the dual problem and the standard theorem [4].

THEOREM 2.7,  For each fe C(B) there exists a linear functional L defined
on C(B)Y such that L(f) - ptf). Lth)y - Oforallhe Vand! 17 < |

Choose an H-set [x; . A;, ¢, ., k] and define the linear functional L associated
with it as

L) = Ae,f(x).
i1

Then L(A) - 0 forall Ae V and
; L Z )\[ .
i1
which sum we make unity.
THeEOREM 2.8.  The maximal linear functional £ as in Theorem 2.7 can be
constructed from an H-set in the above manner.

Proof. From the Approximation Theorem we know that some subset of
the norm points defines an H-set {x;, A; . ¢, , k]. Then

Ly X de fix)

For any algorithmic procedure we need to be able to construct & function /
in V corresponding to some given H-set and to a function f in C(B). For
this we consider a set of k equations in(n - 1) unknowns «, . a, ..... a,and a

(%)

Z a2y - ol f(x), P 200k
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where the H-setis [x; , A;, ¢, , k]. We refer to these as the basic equations for
[x;. A, e, k]. Observe that a useful specialization is to take, B as {x,}.

THEOREM 2.9. A function h defined by the basic equations for |x,,A;.
e, k] isa BTA to f by V on the set {x,:i - 1,2,....k}.

Proof. Consider the basic equations
nx;) = xe; = f(x;). I b 200 ke

the error at each point x; is «, hence every x, is &4 norm point. Also. sgn
[f(x;) — h{x;)] == &;. Since [x,, A, , e, , k] is an H-set, from the Approxima-
tion Theorem Ais a BTA to fby Vontheset{x,:i = I.2... k}

THEOREM 2.10.  The functions h satisfving the basic equations for an H-set
M =[x, A, e, k] form a subset of V which is a translation of a subspace of
V of dimension n — r, where r is the rank of A(M).

Proof. The basic equations for [x,, A, . ¢, , k] can be written in the form

gl(_-\'l) e galxy)
gli("\)l) gn(-\‘l") - (./(“\‘1) .... 'f(-\'k)).
2 e 8

The last row of the matrix must be linearly independent of the other i1 rows.
The theorem follows.
We can now consider the set of BTA to f by V.

THEOREM 2.11. The set of BTA to [ by V is given by hy ~ Q, where
iy € Vis defined by basic equations and Q is a convex subset of V containing the
zero function.

Proof. Every H-set defines a basic set of equations. The solution to any
such set say (d; . s, @, , x), Will have the same value ~ in the (n — I)st
position and in the case where the H-set is a subset of N(f). « -~ p(f) -:
L(f). Conversely, every function /s such that for a fixed value «.

f(x,) — h(x;) = oé, foralli=12..,k,

must satisfy the basic equations for [x; . A, . ¢, . A].

From this we see that for any H-set the solution set for the basic equations
is that set of functions which has a constant vatue for the difference [ f(x)) —
(x;)] where the point set {x;} forms the H-set.
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Thus the set of BTA of /by V¥ must be a subset of the set of solutions for
the basic equations for any H-set in N(f) and hence must be of the form
fiy = Q. where Ay is a particular solution and Q is some subset of the space of
solutions in the homogeneous case. The set Q must be convex due to the
convexity of the set of best approximations. The function /i can be a BTA
to /by ¥ and in this case the zero function is an element of Q.

Consider now the question of uniqueness of a« BTA to f'by F. First we note
that it the matrix A(M) defined by an #H-set M has rank ». then the only
solution to the set of homogeneous cquations

(Ay . Go s a,) AAM) == 8

is the trivial solution. Such an H-set must contain @ maximal minimal H-set.
Using Theorem 2.11. we can now prove the following uniqueness result.

THEOREM 2,120 If'his a BTA to f by V and if N(f) contains a maximal
munimal H-ser, then I is unigue.

Proof.  As was shown above. every set of solutions to basic equations
formed from H-sets in N(f) contains the set of BTA to /by V. In the case we
are considering, where there is a maximal minimal H-set contained in the sct
of norm points N( /), the solution set to the basic equations formed from this
particular H-set consists of a unique element which must be /1. Hence /1 is the
unique BTA to /by V.

This theorem shows that if 1 satisfies the Haar condition, then cvery best
approximation is unique. Thus Theorem 2.12 includes as a special case the
Haar uniqueness theorem.

The converse Lo the Haar uniqueness theorem can be derived from the more
general

Tueorem 2,13, For everv H-set M \x; there exists an fe C(B) such
that M is contained in N(f). If rank A(M) = a, then an [ can be found such
that there is no unique BTA to fby V

Proof. Consider an f, such thateach f(x;)  e;and f{x) - [ otherwise:
then the first part of the Theorem follows using the Approximation Theorem:
the BTA to /by I7is the zero function and M © N (/,).

If rank A4(M) < i, then M lies in some contour O(h) and we can choose /i
such that /! 1. Then

Sxd = (X)) A AR fo(x0)

is a required function for suitably small A,
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